Compiler Analysis and Supports for Leakage Power Reduction on Microprocessors

نویسندگان

  • Yi-Ping You
  • Chingren Lee
  • Jenq Kuen Lee
چکیده

Power leakage constitutes an increasing fraction of the total power consumption in modern semiconductor technologies. Recent research efforts also indicate architecture, compiler, and software participations can help reduce the switching activities (also known as dynamic power) on microprocessors. This raises interests on the issues to employ architecture and compiler efforts to reduce leakage power (also known as static power) on microprocessors. In this paper, we investigate the compiler analysis techniques related to reducing leakage power. The architecture model in our design is a system with an instruction set to support the control of power gating in the component levels. Our compiler gives an analysis framework to utilize the instruction to reduce the leakage power. We present a data flow analysis framework to estimate the component activities at fixed points of programs with the consideration of pipelines of architectures. We also give the equation for the compiler to decide if the employment of the power gating instructions on given program blocks will benefit the total energy reductions. As the duration of power gating on components on given program routines is related to program branches, we propose a set of scheduling policy include Basic Blk Sched, MIN Path Sched, and AVG Path Sched mechanisms and evaluate the effectiveness of those schemes. Our experiment is done by incorporating our compiler analysis and scheduling policy into SUIF compiler tools [32] and by simulating the energy consumptions on Wattch toolkits [6]. Experimental results show our mechanisms are effective in reducing leakage powers on microprocessors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dead-Block Elimination in Cache: A Mechanism to Reduce I-cache Power Consumption in High Performance Microprocessors

Both power and performance are important design parameters of the present day processors. This paper explores an integrated software and circuit level technique to reduce leakage power in L1 instruction caches of high performance microprocessors, by eliminating basic blocks from the cache, as soon as they are dead. The effect of this dead block elimination in cache on both the power consumption...

متن کامل

Compiler-Directed Fine Grain Power Gating for Leakage Power Reduction in Microprocessor Functional Units

As semiconductor technology scales down, leakage-power becomes dominant in the total power consumption of LSI chips. We propose a compiler technique to turn off functional units that are expected to be idle for long periods of time for reducing leakage-power using fine grain power gating technique. Also, we propose a hybrid technique which combines a compiler and hardware based technique to max...

متن کامل

Low Leakage Asynchronous PP based Single Ended 8T SRAM bit-cell at 45nm CMOS Technology

Low power SRAM memory designs has become challenging for portable device applications. Semiconductor/ VLSI industry growth has exponentially demanding low leakage power SRAM designs for high performance chips and microprocessors. To get optimized standard cell memory design for battery operated devices at deep sub micron CMOS technology, a low leakage Asynchronous 8T SRAM is proposed. In this p...

متن کامل

Enhancing Compiler Techniques for Memory Energy Optimizations

As both chip densities and clock frequencies steadily rise in modern microprocessors, energy consumption is quickly joining performance as a key design constraint. Power issues are increasingly important in embedded systems, especially those found in portable devices. Much research has focused on the memory subsystems of these devices since they are a leading energy consumer. Compiler optimizat...

متن کامل

Test Power Reduction by Simultaneous Don’t Care Filling and Ordering of Test Patterns Considering Pattern Dependency

Estimating and minimizing the maximum power dissipation during testing is an important task in VLSI circuit realization since the power value affects the reliability of the circuits. Therefore during testing a methodology should be adopted to minimize power consumption. Test patterns generated with –D 1 option of ATALANTA contains don’t care bits (x bits). By suitable filling of don’t cares can...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002